Viability of Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteria Preserved at Different Temperature and Time

Authors

  • Sekar Karima Rachma Universitas Muhammadiyah Purwokerto
  • Kurniawan Universitas Muhammadiyah Purwokerto
  • Ikhsan Mujahid Universitas Muhammadiyah Purwokerto
  • Kurnia Ritma Dhanti Universitas Muhammadiyah Purwokerto

DOI:

https://doi.org/10.25134/quagga.v16i2.60

Keywords:

Methicillin-Resistant Staphylococcus aureus (MRSA), Preservation, viability, DMSO

Abstract

The bacteria Staphylococcus aureus, a normal component of human flora, is easily mutated and antibiotic-resistant, leading to the creation of Methicillin-Resistant Staphylococcus aureus (MRSA). This bacterium is a difficult-to-control nosocomial infection in healthcare settings, so it must be stored using specialized preservation agents, like DMSO, to investigate the nature and characteristics of these bacteria for prevention, control, and therapy. The purpose of this study was to evaluate the survival of MRSA bacteria that had been kept in a DMSO solution at various temperatures and periods. This study was carried out between July and October2022 using a one-shot study case research design, data analysis, and quantitative descriptive analysis. According to the findings, MRSA bacteria held in 15% DMSO solution lost viability over time and at various storage temperatures. Among various bacterial species held at various storage temperatures, MRSA bacteria had the lowest colony loss rate (-20 °C). Based on the findings of this study, it can be said that the preservation of MRSA bacteria at freezing temperature (-20 °C) and storage length of one month resulted in the greatest survivability of the bacteria when stored in 15% DMSO solution.

References

Adhikari, A. et al. (2018) ‘Effect of storage time and temperature on the viability of E. coli O157:H7, Salmonella spp., Listeria innocua, Staphylococcus aureus, and Clostridium sporogenes vegetative cells and spores in vacuum-packed canned pasteurized milk cheese’, International Journal of Food Microbiology, 286(2018), pp. 148–154. doi:10.1016/j.ijfoodmicro.2018.07.027.

Ali, P. et al. (2021) ‘Cryopreservation of cyanobacteria and eukaryotic microalgae using exopolysaccharide extracted from a glacier bacterium’, Microorganisms, 9(2), pp. 1–14. doi:10.3390/microorganisms9020395.

Best, B.P. (2015) ‘Cryoprotectant toxicity: facts, issues, and questions’, Rejuvenation Research, 18(5), pp. 422–436. doi:10.1089/rej.2014.1656.

Bhattacharya, S. (2018) ‘Cryopretectants and their usage in cryopreservation process’, in Cryopreservation Biotechnology in Biomedical and Biological Sciences, pp. 7–19. doi:10.5772/intechopen.80477.

Cabello-Olmo, M. et al. (2020) ‘Influence of storage temperature and packaging on bacteria and yeast viability in a plant-based fermented food’, Foods, 9(3), p. 302. doi:10.3390/foods9030302.

Chang, C.W. and Lin, M.H. (2019) ‘Preservation efficiency and storage effects for viable and culturable Staphylococcus aureus’, Aerobiologia, 35(1), pp. 139–151. doi:10.1007/s10453-018-9549-z.

Dhiani, B.A., Nabilla, I.Y. and Wahyuningrum, R. (2021) ‘Pengaruh perbedaan konsentrasi dimetil sufoksida dan gliserol sebagai cryoprotectant terhadap pertumbuhan Sel Vero Cryopreserved’, in GRACE UMY 2021.

Dibah, S. et al. (2014) ‘Prevalence and antimicrobial resistance pattern of methicillin resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in Ardabil, Iran’, Iranian Journal of Microbiology, 6(3), pp. 163–168.

doi:10.31080/asmi.2019.02.0370.

Ermenlieva, N. et al. (2021) ‘Suggestion for an optimal model for E.coli, S. aureus And C. albicans preservation at a stroge temperature in the range of 4°C TO -20°C’, Journal of IMAB - Annual Proceeding (Scientific Papers), 27(4), pp. 4038–4042. doi:10.5272/jimab.2021274.4038.

Fitriana (2019) ‘Preservation of Corynebacterium striatum bacteria using silica gel’, in Pros Sem Nas Masy Biodiv Indon, pp. 134–138. doi:10.13057/psnmbi/m050125.

Guo, N., Wei, Q. and Xu, Y. (2020) ‘Optimization of cryopreservation of pathogenic microbial strains’, Journal of Biosafety and Biosecurity, 2(2), pp. 66–70. doi:10.1016/j.jobb.2020.11.003.

Hine, T.M. et al. (2019) ‘Kualitas sperma beku sapi bali dalam pengencer air kelapa modifikasi dengan berbagai aras dimethyl sulfoxide (frozen sperm quality of bali bulls in modified coconut water extender with different dimethyl sulfoxide concentration)’, Jurnal Veteriner, 20(1), p. 93. doi:10.19087/jveteriner.2019.20.1.93.

Jang, T.H. (2017) ‘Cryopreservation and its clinical applications | Elsevier Enhanced Reader’, Integrative Medicine Research, 6(1), pp. 12–18. doi:10.1016/j.imr.2016.12.001.

Kim-Farley, R.J. et al. (1987) ‘Silica gel as transport medium for Corynebacterium diphtheriae under tropical conditions (Indonesia)’, Journal of Clinical Microbiology, 25(5), pp. 964–965. doi:10.1128/jcm.25.5.964-965.1987.

Kurniawan, Tyas, E.A. and Supriyadi (2021) ‘Prevalensi bakteri Methicillin-Resistant Staphylococcus aureus (MRSA) pada peralatan laboratorium’, Surabaya : The Journal of Muhamadiyah Medical Laboratory Technologist, 2(4), pp. 188–200.

Mahmmoud, E.N. (2020) ‘Comparison of preservation methods of staphylococcus aureus and escherichia coli bacteria’, Journal of Pure and Applied Microbiology, 14(3), pp. 2173–2180. doi:10.22207/JPAM.14.3.58.

Missiakas, D.M. and Schneewind, O. (2018) ‘Growth and Laboratory Maintenance of Staphylococcus aureus’, Curr Protoc Microbiol, pp. 1–12. doi:10.1002/9780471729259.mc09c01s28.Growth.

Prakash, O., Nimonkar, Y. and Shouche, Y.S. (2013) ‘Practice and prospects of microbial preservation’, FEMS Microbiology Letters, 339(1), pp. 1–9. doi:10.1111/1574-6968.12034.

Range, K., M, D. and Moser, Y.A. (2012) ‘Laboratory Maintenance of Methicillin-Resistant Staphylococcus aureus (MRSA)’, Bone, 23(1), pp. 1–7. doi:10.1002/9780471729259.mc09c02s28.Laboratory.

Rosmania and Yuniar (2021) ‘Pengaruh waktu penyimpanan inokulum Escherichia coli dan Staphilococcus aureus pada suhu dingin terhadap jumlah sel bakteri di Laboratorium Mikrobiologi’, 23(3), pp. 117–124. doi:10.56064/jps.v23i3.624.

Setiaji, J., Johan, T.I. and Widantari, M. (2015) ‘Pengaruh gliserol pada media Tryptic Soy Broth (TSB) terhadap viabilitas bakteri Aeromonas hydrophila’, Jurnal Dinamika Pertanian, XXX(April), pp. 83–91. Available at: https://journal.uir.ac.id/index.php/dinamikapertanian/article/view/827.

Siddiqui, M. et al. (2016) ‘Comparative effectiveness of Dimethyl Sulphoxide (DMSO) and Glycerol as cryoprotective agent in preserving Vero cells’, Bangladesh Veterinarian, 32(2), pp. 35–41. doi:10.3329/bvet.v32i2.30608.

Siddiqui, M. et al. (2017) ‘The effect of different concentrations of Dimethyl sulfoxide (DMSO) and glycerol as cryoprotectant in preserving Vero cells’, Bangladesh Veterinarian, 33(1), pp. 1–7. doi:10.3329/bvet.v33i1.33307.

Soltys, R.C., Balen, J. Van and Hoet, A.E. (2012) Comparative toxicity of cryoprotectants on Staphylococcus aureus at room temperature. The Ohio State University.

Summer, K. et al. (2022) ‘Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO)’, Biofilm, 4(August), p. 100081. doi:10.1016/j.bioflm.2022.100081.

Susilawati, L. and Susiawati Purnomo, E. (2016) ‘Viabilitas sel bakteri dengan cryoprotectant agents berbeda (sebagai acuan dalam preservasi culture collection di Laboratorium Mikrobiologi)’, Biogenesis: Jurnal Ilmiah Biologi, 4(1), pp. 34–40. doi:10.24252/bio.v4i1.1118.

Taylor, T.A. and Unakal, C.G. (2022) ‘Staphylococcus Aureus.’, in StatPearls. Treasure Island (FL): StatPearls Publishing.

Tseng, C.C. et al. (2014) ‘Optimization of propidium monoazide quantitative PCR for evaluating performances of bioaerosol samplers for sampling airborne staphylococcus aureus’, Aerosol Science and Technology, 48(12), pp. 1308–1319. doi:10.1080/02786826.2014.985780.

Whaley, D. et al. (2021) ‘Cryopreservation: an Overview of principles and cell-specific considerations’, Cell Transplantation, 30, pp. 1–12. doi:10.1177/0963689721999617.

Yagüe, D.P. et al. (2021) ‘Survival of Staphylococcus aureus on sampling swabs stored at different temperatures’, Journal of Applied Microbiology, 131(3), pp. 1030–1038. doi:10.1111/jam.15023.

Downloads

Published

01-07-2024

How to Cite

Sekar Karima Rachma, Kurniawan, Ikhsan Mujahid, & Kurnia Ritma Dhanti. (2024). Viability of Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteria Preserved at Different Temperature and Time. Quagga: Jurnal Pendidikan Dan Biologi, 16(2), 144–152. https://doi.org/10.25134/quagga.v16i2.60