The Effect of Thiamine HCL Concentration Variation on the Seedling of Phalaenopsis Var. Happy Valentine

Handini1, M. Anas Dzakiy2, Eny Hartadiyati W.H3

1,2,3Biology Education Study Program, Faculty of Mathematics Natural Sciences Education and Information Technology, University of PGRI Semarang. Jl. Sidodadi Timur No.24 Semarang City, Central Java 50232
*Corresponding author: mhs20320032@upgris.ac.id

Abstract: Phalaenopsis var. Happy Valentine orchid is a plant with a growth and flowering process of approximately 1-2 years. Generally, orchids can bloom in about 9-12 months. Optimal concentrations of Thiamine HCl (vitamin B1) are required to support the vegetative growth of Phalaenopsis var. Happy orchids. This research aims to determine the effect and the best concentration of vitamin B1 among 1ml, 2ml, and 3ml on the vegetative growth, including leaf span, root quantity, leaf width, and length of young leaves of Phalaenopsis var. Happy Valentine seedlings. The method used was a Completely Randomized Design (CRD), with treatment factors being the concentration of vitamin B1 and Growmore fertilizer, comprising four treatment levels and six replications, namely V0 = 2gr/L Growmore fertilizer, V1 = 2gr/L Growmore fertilizer + 1ml B1, V2 = 2gr/L Growmore fertilizer + 2ml B1, dan V3 = 2gr/L Growmore fertilizer + 3ml B1. This research used 24 Phalaenopsis var. Happy Valentine orchid seedlings as research samples. The data were analyzed using ANOVA with a significance level 0.05 and subsequently subjected to Duncan's test. The results indicate that vitamin B1 significantly affects leaf span, length of young leaves, and the quantity of roots in Phalaenopsis var. Happy Valentine.

Keywords: Concentration; Phalaenopsis; Thiamine HCl

1. INTRODUCTION

Biodiversity in Indonesia is significantly high (Alang et al., 2022). One of these is the orchid, particularly the Phalaenopsis orchid, which has held economic significance (Yang et al., 2021), especially on an industrial scale in recent decades (Chao et al., 2018). This is due to its decorative value and high aesthetic diversity (Pudji Restanto et al., 2021). Moreover, Phalaenopsis orchids have various unique flower forms (Lin et al., 2016). As a result, Phalaenopsis orchids have become some of the most sought-after varieties. However, some orchid species are on the verge of extinction due to a dramatic decline (Shao et al., 2022). Orchids from the Phalaenopsis genus have an extended blooming period (Tong et al., 2020).

Phalaenopsis can bloom two or three times a year, with each blooming period lasting around 1-2 months. Only after two to three years do Phalaenopsis orchids begin to flower (Rakhmawati Dewi, 2019). Therefore, with proper care and attention, such as fertilization and a conducive growing environment, orchid plants can flourish and produce more flowers. (Sukartini et al., 2014).

Essentially, the commonly used vitamin is Thiamine (B1) because Thiamin (B1) functions in carbohydrate metabolism, playing a role in converting glucose or sugar into energy (Kusmiadi et al., 2023). This makes Thiamine applicable to plants, including Phalaenopsis orchids, requiring ample growth energy. Additionally, Thiamine is also needed to
synthesize sugar and amino acids, which are the basic building blocks for plant growth and development, helping plants overcome growth stress and build new tissues. Similar to plants in general, *Phalaenopsis* orchids require fertilizers to promote their vegetative growth (Surtnah, 2013).

Seedling *Phalaenopsis* orchids are often chosen for research because these orchids are initially planted in culture bottles for one year. Afterward, the plants are ready to be transferred to a more extreme environment or acclimatized. At the age of 8 months post-acclimatization, they are referred to as seedlings and are considered to easily adapt to the environment, provided they are given proper treatment. Therefore, fertilizer is necessary at this stage to promote the growth of *Phalaenopsis* orchid seedlings (Surtnah, 2013). The seedling phase marks the transition from seedling to adolescence, making it a phase where vegetative growth can be observed rapidly. Vegetative growth parameters considered include leaves and roots due to the growth pattern of the monopodial type of *Phalaenopsis* orchid (Arobay, 2022); therefore, measuring it specifically is challenging since only the pseudostem grows. Meanwhile, the leaves of *Phalaenopsis* orchids are attached to tree bark in a riding position (Erwindah et al., 2022). The plentiful and branching root structure makes counting the number of roots in *Phalaenopsis* orchids easier. Having numerous and long roots can contribute to better growth. The more roots a plant has, the more efficient it is in absorbing water and enhancing nutrient value for plant growth (Liu et al., 2019). Roots also serve as a storage place for energy in the form of carbohydrates (Risdiana et al., 2023).

Fertilization for *Phalaenopsis* orchids occurs in the late afternoon because the transpiration process occurs most rapidly during this time. The orchid stomata can open, and environmental factors accelerate this process. Furthermore, evening fertilization promotes faster plant growth as it accumulates more nitrogen compared to morning fertilization. Therefore, this research aims to determine the effect and optimal treatment factor of vitamin B₁ concentration for the vegetative growth of *Phalaenopsis* var. Happy Valentine is measured based on leaf length, leaf width, root quantity, and length of young leaves.

2. RESEARCH METHODOLOGY

The study was conducted at CV. Candi Orkid, Jl. Bukit Unggul Raya No.17, Bendan Ngisor, Semarang City, during the months of May to July 2023. This research employed an experimental method to examine the effect and optimal concentration of three treatments of vitamin B₁ (Anisa et al., 2018). Data were collected through direct observation and recording, involving several stages such as equipment sterilization (Amista et al., 2020) using 70% alcohol for 30 seconds (Muna et al., 2022), followed by material preparation, planting media preparation, treatment solution dilution preparation, and spraying stages. There were four groups, each with six samples of *Phalaenopsis* var. Happy Valentine orchids. Each sample had four leaves, six roots and was an 8-month-old seedling post-acclimatization. The orchids were planted in 1.7-inch soft pots using a planting medium with 150 grams of kadaka root.

The preparation of the Growmore fertilizer solution for the treatment involved weighing 2 grams of Growmore fertilizer powder and adding it to 1000 ml of regular water in a measuring glass, then stirring thoroughly. A 4-liter solution of Growmore fertilizer was prepared for the control group, and the mixture of 3 concentrations of Thiamine HCl. In the preparation of the vitamin B₁ solution using a dosage of 1 ppm, the method involved preparing vitamin B₁ and distilled water in a ratio of 1:100. In a measuring glass, filled 100 ml of distilled water (aquades), then injected 1 ml of vitamin B₁ using a syringe and stirred slowly. Pour the vitamin B₁ solution into a glass container, seal it tightly with aluminum foil, relayered it with plastic, and secure it with a rubber band. The resulting vitamin B₁ solution was placed in the refrigerator and observed for 24 hours to ensure no contamination. After one day without contamination, the solution could be used on plants and applied according to the planned research concentrations. In the V0 group (Control), treatment involved using only 2 grams/L Growmore fertilizer.
After that, in group V1, 2 grams/L of Growmore fertilizer + 1 ml/L of B$_1$ concentration were used. Group V2 used 2 grams/L of Growmore fertilizer + 2 ml/L of B$_1$ concentration, and group V3 used 2 grams/L of Growmore fertilizer + 3 ml/L of B$_1$ concentration. The vitamins were given twice a week, between 3:00 PM – 5:00 PM, for a total of 12 weeks. Research data were collected from measurements of leaf span (cm), length of young leaves (cm), leaf width (cm), and the number of roots. The data analysis technique used was one-way ANOVA with a significance level of 0.05, followed by Duncan's test. SPSS 27 was used to process the data.

3. RESULTS AND DISCUSSION

Research on orchids using vitamin B$_1$ has been extensively conducted (Gusti et al., 2013). However, this study is specific as it focuses on seedling orchids of Phalaenopsis var. Happy Valentine to generate continuous data compared to previous research (Sebastian, 2022). The study used parameters such as leaf span, leaf width, root quantity, and young leaf length, which were modified from previous research parameters. Thiamine (B$_1$) functions in carbohydrate metabolism, playing a role in converting glucose or sugar into energy (Kusmiadi et al., 2023) that can be utilized by plants because Phalaenopsis orchids require a considerable amount of energy to grow, and vitamin B$_1$ helps enhance this process. Orchids cannot obtain the necessary nutrients from the environment, thus requiring a steady supply of macro and micro components (Dwi Agustiar et al., 2020). This is why vitamin B$_1$ is often chosen for Phalaenopsis orchids. As stated by Aini et al. (2016) Thiamine (B$_1$) supplementation in orchids has proven to stimulate cell division, accelerating growth by enhancing hormonal activity in plant tissues. Consistent with the findings of Latif et al. (2020), the application of vitamin B$_1$ to Phalaenopsis orchids will increase leaf production and the number of new roots produced because vitamin B$_1$ stimulates cell proliferation in root meristems.

The research results on the leaf span of Phalaenopsis orchids are presented in Table 2.

| Table 1. Anova Results for Leaf Span |
|---------|--------|--------|-----|
| df | Mean | F | Sig |
| Between Groups | 3 | 27.923 | 3.382 | 0.038|
| Within Groups | 20 | 8.256 | | |
| Total | 23 | | | |

Sig < 0.05: There is a significant effect of the application of vitamin B$_1$ treatment.

| Table 2. Duncan’s Test Results for Leaf Span |
|---------|--------|--------|--------|
| treatment | V0 | V1 | V2 | V3 |
| Leaf Span (cm) | 3.68 a | 6.10 ab | 7.92 b | 8.48 b |

a,b: Similar letter notations indicate no significant difference at the 5% Duncan test level.

The best concentration for leaf span can be achieved using a 2 ml/L concentration. The optimal concentration can be selected as 2 ml because, economically speaking, both the 2 ml and 3 ml concentrations have a similar effect on the growth of the leaf span of Phalaenopsis orchids. Therefore, a concentration of 2 ml of vitamin B$_1$ can be used as it requires fewer materials, resulting in lower expenses and supporting the efforts of farmers.

The absorption process of vitamin B$_1$ can affect the growth of the leaf span through several stages. Roots absorb nutrients through ions through osmosis (Amir, 2016). These roots have a lower nutrient concentration than the surrounding soil solution (Gusti et al., 2013). Water enters the root cells passively through the cell membrane due to concentration differences, carrying mineral ions or dissolved nutrients for plant growth (Yahya, 2015). The difference in substance concentration across the cell membrane causes osmotic pressure, leading to the movement of molecules from an area of high concentration to low concentration (Musliman & Damayanti, 2023). This process occurs through a semi-
permeable cell membrane, which is permeable to water molecules that have sizes corresponding to the membrane pores (Musliman & Damayanti, 2023). The movement of water and dissolved nutrients from the roots to the leaves is referred to as the water transport system in plants. The concentration of water at the root tip increases, causing a difference in concentration between the cells at the root tip and those above, resulting in root pressure. This pressure helps push water and nutrients upward for use in the plant's vegetative growth (Sobari, 2020). Therefore, vitamin B₁ can affect the leaf span growth of Phalaenopsis orchids.

Furthermore, measurements of the length of young leaves, as indicated in Table 4, show no significant differences. However, between the control group and all concentrations of vitamin B₁ treatments, there are statistically significant effects, as indicated by the differing notations. Based on the analysis results, the optimal concentration for the length of young leaves is 3ml/L. This aligns with the findings of Latif et al. (2020), who suggested that a concentration of 3ml/L of Vitamin B₁ (Thiamin HCl) is most favorable for orchid growth. Duncan's test results indicate that Thiamin is a critical factor in accelerating cell division (Raodah Garuda et al., 2015).

Table 3. Anova Results for Young Leaf Length

<table>
<thead>
<tr>
<th>df</th>
<th>Mean</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>3</td>
<td>26.682</td>
<td>3.224</td>
</tr>
<tr>
<td>Within Groups</td>
<td>20</td>
<td>8.276</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* sig < 0.05. There is an effect of the application of vitamin B₁ treatment.

Table 4. Duncan's Test Results for Young Leaf Length

<table>
<thead>
<tr>
<th>treatment</th>
<th>V0</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young Leaf Length (cm)</td>
<td>4.50 a</td>
<td>6.45 ab</td>
<td>6.78 ab</td>
<td>9.62 b</td>
</tr>
</tbody>
</table>

a,b: Similar letter notations indicate no significant difference at the 5% Duncan test level.

Adding 3ml of Thiamin HCl is the optimal concentration for leaf length growth. As observed from the results of young leaf length, the treatment with a concentration of 3ml Vitamin B₁ (Thiamin HCl) indicates the best leaf growth, although the difference is not significant. It can be affirmed that the application of Thiamin HCl stimulates the activity of hormones in plant tissues, facilitating cell division, enlargement, and the formation of new cells (Yustitia R. Inung, 2017). Because vitamin B₁ can accelerate cell division, it stimulates the formation of new leaf buds at the apex of the shoot (Clarah et al., 2017). Leaf growth will also increase compared to using regular fertilizers without the addition of vitamin B₁. In this study, the addition of vitamin B₁ resulted in a noticeable increase in leaf growth, as evidenced by the faster growth of young leaves compared to the control treatment that only used fertilizer. The primary function of Thiamin in plants is as a cofactor (Amalia et al., 2015) in various enzymatic reactions involved in carbohydrate and energy metabolism.

In the observed number of new roots, the produced vitamin B₁ has an effect, and the concentration of 3ml/L is the optimal concentration, as seen in Table 6.

Table 5. Anova Results for Number of Roots

<table>
<thead>
<tr>
<th>df</th>
<th>Mean</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>3</td>
<td>5.000</td>
<td>3.226</td>
</tr>
<tr>
<td>Within Groups</td>
<td>20</td>
<td>1.550</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* sig < 0.05. There is an effect of the application of vitamin B₁ treatment.
Table 6. Duncan's Test Results for Number of Roots

<table>
<thead>
<tr>
<th>treatment</th>
<th>V0</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Roots</td>
<td>7.00<sup>a</sup></td>
<td>7.67<sup>ab</sup></td>
<td>8.17<sup>ab</sup></td>
<td>9.17<sup>b</sup></td>
</tr>
</tbody>
</table>

^{a,b}: Similar letter notations indicate no significant difference at the 5% Duncan test level.

Figure 3. Average Root Number Chart

There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015). There is a significant difference between the control (V0) and vitamin B₁; however, the treatment concentration of 3ml (V3) shows more growth even compared to the 1ml and 2ml concentrations, where the number of roots is not as significant. The application of vitamin B₁ (Thiamin HCl) is an essential component because it can accelerate cell division in the root meristem. This is supported by research (Raodah Garuda et al., 2015).

Table 7. Anova Results for Leaf Width

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>Mean</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>3</td>
<td>.020</td>
<td>.247</td>
<td>.863</td>
</tr>
<tr>
<td>Within Groups</td>
<td>20</td>
<td>.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sig < 0.05: There is an effect of the application of vitamin B₁ treatment.

Figure 4. Average Leaf Width Growth Chart

The obtained sig. (0.863) > 0.05 indicates no significant effect of changes in vitamin B₁ (Thiamin HCl) concentration on the leaf width of *Phalaenopsis*. Therefore, no further tests are needed.

Regarding leaf width, vitamin B₁ (Thiamin HCl) has not been able to accelerate leaf expansion. The best leaf width is obtained in the control treatment (V0), which uses growmore fertilizer at a concentration of 2gr/L. This is because fertilizers are generally designed to provide the complete nutrition needed by plants. Fertilizers contain a mixture of nutrients such as nitrogen, phosphorus, potassium, and micro elements required for the overall growth of plants, including leaves; as stated by Dwi Purnomo et al. (2015), the content in fertilizer will compensate for nitrogen deficiencies, resulting in broader and greener leaves. Using fertilizer is more effective in supporting overall plant growth, including widening leaf width. Meanwhile, vitamin B₁ only plays a role in carbohydrate metabolism, with no direct effect on the widening of leaves. The lack of effect of vitamin B₁ on leaf width is also caused by nutrient factors contributing to leaf span and the length of young leaves, causing a decrease in leaf width. Another reason is the morphology of *Phalaenopsis* orchid leaves, which are elongated...
and tapering, directing leaf growth more towards elongation rather than width (Ayuningtyas et al., 2020).

4. CONCLUSION

Vitamin B₁ (Thiamin HCl) has an effect in supporting the vegetative growth of *Phalaenopsis* var. *Happy Valentine* orchid seedlings, specifically in leaf span, length of young leaves, and the number of roots, but it does not affect leaf width. The optimal concentration of 2 ml/L was found to significantly affect the expansion of the leaf span. Similarly, vitamin B₁ indicates an effect on the growth of young leaf length and the number of roots at a concentration of 3 ml/L. Consequently, *Phalaenopsis* orchid seedlings, which typically exhibit slow growth, can be supported to achieve faster vegetative growth by utilizing vitamin B₁.

5. ACKNOWLEDGEMENTS

The researcher expresses gratitude for the partner CV. Candi Orchid, Mr. Sudibyo Ari Prabowo, and Mrs. Eni Asriati for sharing their expertise and dedicating their time to assist in completing this research.

6. REFERENCES

VARIETAS CAKRA HIJAU. In Jurnal Biologi (Vol. 6, Issue 2).
https://doi.org/10.33603/agrosagati.v6i2

https://doi.org/10.17503/agrivita.v38i3.696

https://doi.org/10.1111/pbi.12383

https://doi.org/10.1111/pbi.13179

https://doi.org/10.25134/quagga.v14i1.3796

Musliaman, A., & Damayanti, F. (2023). MODEL SIMULASI TEKANAN OSMOTIK DINDING SEL SEBAGAI INTEGRASI KONSEP HIDROSTATIK DAN SISTEM TRANSPORTASI AIR DALAM TUMBUHAN.

Yahya. (2015). **PERBEDAAN TINGKAT LAJU OSMOSIS ANTARA UMBI SOLONUM TUBEROSUM DAN DOUCUS CAROTA.**

Yustitia R. Inung. (2017). **PENAMBAHAN VITAMIN B1 (THIAMIN) PADA MEDIA TANAM (ARANG KAYU DAN SABUT KELAPA) UNTUK MENINGKATKAN PERTUMBUHAN BIBIT ANGGREK (Dendrobium sp) PADA TAHP AKLIMATISASI.**